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dimensions 
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School of Physics, The University of New South Wales, PO Box 1, Kensington, 
NSW 2033, Australia 

Received 12 June 1991 

Abstract. Bothhigh-temperature andlowtemperature series are used to locate and 
characterize the bt-order transition in the %state Potts model in (2t1) dimensions 
on both square and trianylar lattices. Estimates are presented for the vacuum 
energy, latent heat, magnetization, susceptibility and maus gap at the transition. 
The spontaneous magnetization and latent heat appear to display an 'approximate 
universality' at this weak first-order transition. 

1. Introduction 

There has recently been a resurgence of interest in the three-dimensional 3-state Potts 
model. I t  is commonly thought to undergo a weak first-order phase transition, but  
this was brought into some question when the APE collaboration (Bacilieri et al  
1988) performed a large Monte Carlo simulation of the SU(3) gauge theory at  finite 
temperature, which ought to he in the same universality class as the Potts model. 
They found a large correlation length, increasing with lattice size, which appeared to 
indicate a second-order transition. The Columbia group (Brown el Q/ 1988), on the 
other hand, found that the SU(3) transition was indeed first-order. 

llllllyl LVILLLVvclDJ w _  CLLYYbLL bLLw.=L a LFllrRCU apyLolDaL I v y y I  

model, Several Monte Carlo treatments have recently appeared (Fukugita and Okawa 
1989, Gavai el a/ 1989, Gupta e l  a /  1990, Fukugita el  al 1990, Alves el a /  1991, 
Bonfim 1991), which have concentrated particularly on the correlation length, and the 
finite-size scaling behaviour of the system. They conclude that the correlation length 
remains finite though large at the transition point, so that the transition is confirmed 
as being first-order. 

In the present work we use series methods to study the  quantum Hamiltonian 
version of the 3-state Potts model in (2 + 1) dimensions. Series have previously been 
calculated for the Euclidean version of the model by Ditzian and Oitmaa (1974), Ent- 
ing (1974), Straley (1974), Kim and Joseph (1975) and Miyashita e l  a l  (1979), hut  
they reached no definite conclusion as to the order of the transition. A first-order tran- 
sition is difficult to characterize, or even detect, using either high-temperature (HT) 
series or low-temperature (LT) series alone. I t  is better to use both high-temperature 
and low-temperature series simultaneously to locate the transition, by means of a 
'pincer' strategy. This technique was recently used by Guttmann and Enting (1990) 
for the Euclidean model, and we use it again here. The only previous study of the 
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Hamiltonian model which we know of is that of Hamer e l  a/ (1990, hereafter referred 
to as I), which used high-temperature series combined with a Monte Carlo simulation 
to locate the transition. 

The methods we use are reviewed briefly in section 2, and the series analysis 
is presented in section 3. Our conclusions are summarized in section 4. Estimates 
are given for the transition point, the spontaneous magnetization, the latent heat, 
and the m w  gap at the transition. Expressed in percentage terms, the spontaneous 
magnetization and the latent heat appear to be remarkably similar for the Hamiltonian 
model on the square lattice and the triangular lattice, and for the Euclidean model. 
We speculate that this 'approximate universality' at  a first-order transition may be 
connected with the weakness of the transition, so that the correlation length at the 
transition, though finite, is very large, and washes out the microscopic details of the 
interaction. The behaviour of the mas6 gap is also discussed. 

C J Hamer el a/ 

2. Method 

High-temperature series expansions for the (2 + 1)-dimensional 3-states Potts model 
have been obtained previously in reference I. The high-temperature form of the Hamil- 
wiiiaii 15 ( w u r b a g  auu aaspncii I J I  I ,  ~ U L J V U L  LJOL, 
L-..:-.. :- ,a":*&-- ^ _ _ 1  C&--l.-- r n v ,  P̂,..̂- I " O l \  

where i labels the sites on a twwdimensional spatial lattice, (ij) denotes nearest- 
neighbour pairs of sites, and X is the coupling (corresponding to the inverse tempera- 
ture in the Euclidean formulation). 

In this paper, we derive the complementary low-temperature series expansion for 
the model, where the corresponding Hamiltonian is 

where Li and R' are operators at each site, which in a basis of eigeustates of Li obey 
the rules 

L , ~ / J  = ii1/;) ri = 0 ,1 ,2  (2.3) 

and 

RfII;) = I(/, k 1) mod 3) (2.4) 

-- r ~ - r  of ~-~ -A:-:-- - - A  1 :_- ----- t--- e-. th- * - C m  I mnAl.ln 7 Thn turn 
n" bLI0II 'li a,< ,",a','& a,," LuwrlrlLg YpC"'yY1" L"1 U l l r  Yp'.. .,, ...-""I- V.  1.1- "..- 
versions of the Hamiltonian are related by 

(2.5) 
1 

H ( X )  = TH'(X') X = l / X ' .  
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For the low-temperature version, the magnetic field term to be added to the Hamil- 
tonian (2.2) is taken as 

H , =  h x c o s ( y L i )  
i 

and the spontaneous magnetization and susceptibility are defined as 

where N is the number of iattice sites. 
There are two sectors of excited states in the model, symmetric and antisymmetric, 

respectively, under a spin-parity transformation. The lowest excited state in each 
sector is a single site excitation, in both the HT and LT phases. In the high-temperature 
series expansion the two states have the same eigenvalues FS and FA, but in the low- 
temperature expansion the two states differ, except in the limit of A' = 0. 

i n e  low-bemyeracure series exyarrsions LOT mt. IIIVUCI i i a v r  UCCLI VUWLLLCU U U L ~  

Nickel's cluster expansion method (1980). The necessary techniques were reviewed re- 
cently by He et al (1990), and will not be repeated here. In these calculations, the first 
term in (2.2), -2 cos[(2rr/3)(Li - Lj)], is taken as the unperturbed Hamiltonian, 
diagonal in the basis of eigenvectors of Li ,  while the second term, -A'C,(R+ + R;), 
then acts as a perturbation which 'flips' the spin at  site i .  

m L ~  , - ~ ~ ~ I  .-.- ---I .... ...:~- >..~. *.. .L. - . -A. ,  L .... Le-- -LA-:"-> ..":.." 

3. Series analysis  

Series have been calculated for the ground-state energy per site E O / N ,  the magne- 
tization MO, the susceptibility x ,  and the symmetric and antisymmetric lowest-lying 
excited state eigenvalues F S ;  F A  on both the square lattice and the triangular lattice. 
For the ground-state energy and its derivatives, a l i t  of 502 linked clusters (up to 10 
sites) for the square lattice or 2129 linked clusters (up to 10 sites) for the triangu- 
lar lattice was required. The energy gap involved 528 clusters (up to 9 sites) for the 
square lattice or 1480 clusters (up to 9 sites) for the triangular lattice, both linked and 
unlinked. The calculation occupied some 120 hours of CPU time for the square lattice 
and 400 hours of CPU time for the triangular lattice on an IBM3090. The resulting 
series for this model on the square and triangular lattices are listed in tables 1 and 2. 

The analysis of these series was carried out as follows. Firstly, we have performed 
a standard Dlog Pad6 analysis (Guttmann 1989) of the series for the derivative of 
the ground-state energy per site, magnetization, susceptibility, and mass gap, as for 
a model with a normal second-order phase transition. The results are exhibited in 
table 4 together with the those from the high-temperature expansion series obtained 
in reference I. The Dlog Pad6 analysis did not give a very good result for the case of 
the susceptibility series on the triangular lattice, but a significant improvement was 
gained by using second-order confluent differential approximants (Guttmann 1989). 
The results are shown in table 3. From this table, we estimate that the apparent 
critical point lies a t  A $  = 4.080(8) (that is, At = 0.2451(5)), with critical index 
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Table 1. Low-temperature series coefficients for the pound-state energy per site 
EoIN, the spontmeotm magnetinstion MO, and the susceptibility x. Coefficients of 
A'" are listed for the square and triangular lattices. 

n EoIN MO X 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Square lattice 
0 -4 
1 0 
2 -1.6666666666673-01 
3 -1.388888888889E-02 
4 -1.047178130511E-03 
5 -2.893518518519E-04 
6 -6.210846249794E-05 
7 -1.184658489194E-05 
8 -3.342271499429E-06 
9 -9.705310401687E-07 

10 -2.773825591688E-07 
11 -8.1754385785863-08 
1 2  -2.386217812185E-08 
13 - 7.208029941710E-09 
14 -2  285537067890E-09 
15 -7.315630086485E-10 
16 -2.3396308915593-10 
17 -7.530587146052E-11 
18 -2,4549832335393-11 
19 -8.131763607716E-12 
20 -2.722484786373E-12 
21 -9.149097359207E-13 
Tihngular lattice 

-6 
0 

- l . l l l l l l l l l l l l E - 0 1  
-6.1728395061733-03 
-2.556428482354E-04 
-4.191434232586E-05 
-6.458128005391E-06 
-9.0105743689893-0'7 
-1.652302223543E-07 
-2.909944866023E-08 
- 5.162754579363E-09 
-9.980113078545E-10 
- 1.935840239499E- 10 
-3.807532677699E- 11 
-7.713233333150E--12 
-1.578331537009E-12 
-3.2693317029763-13 
-6.869860787491E- 14 
-1.453846335970E- 14 
-3.109079362475E- 15 
-6.693093953533E- 16 
- 1.450503323791E-16 

1 
0 

- 2.083333333333E-02 
-3.4722222222223-03 
- 7.443756823717E-04 
-2.732767489712E-04 
-7.362018501286E-05 
-2.096679943791E-05 
- 7.01 54096454603-06 
-2.319141497062E-06 
-7.786375209009E-07 
-2.627731525926E-07 
- 8.791220529922E-08 
-3.003007170112E-08 
-1.046167725701E-08 
-3.657315605767E-09 
- 1.279468570129E-09 
- 4.487654316849E-10 
- 1.583161525936E-10 
-5.627251031485E-11 
-2.010041160867E-11 
-7.193960475398E-12 

1 
0 

-9259259259259E-03 
-1.028806584362E-03 
- 1.220680429435E-04 
- 2,7688868566783-05 
-5.079715430319E-06 
-9.925286106656E-07 
-2.153500021045E-07 
-4.456285870763E-08 
-9.478970528428E-09 
-2.079451276240E-09 
-4.545559862194E- 10 
- 1.005485265567E-10 
-2.249641670730E-11 
-5.052763883443E- 12 
- 1.142813355451E- 12 
- 2.600930589549E-13 
- 5.942336637995E-14 
-1.363050543491E-14 
-3.1379761500WE-15 
-7.246814315764E-16 

0 
0 
52083333333333-03 
1.3020833333333-03 
5.728376190276E-04 
2.618902177641E-04 
9.137088662052E-05 
3.453547666403E-05 
1.3603554358983-05 
5 249748958030E-06 
2.041457638106E-06 
7.829374078637E-07 
2.96931 2377822E-07 
1,1345669379063-07 
4.352721704361E-08 
1.666029175193E-08 
6.357310162579E-09 
2.420730778299E-09 
9.221080408443E-10 
3.518097956941E-10 
1.342767768690E-10 
5.120722886428E--11 

0 
0 
1.543209876543E-03 
2.572016460905E-04 
6.170451925987E-05 
1.770986807567E-05 
4.119749751020E-06 
1.042079278821 E-06 
2.654289694439E-07 
6.477704862943E-08 
1.607480225699E-08 
3.991144555161E-09 
9.823286089554E-10 
2.424609757153E-10 
5.982034087154E-11 
1.473125528589E-11 
3.630014081219E-12 
8.944146265777E--13 
2.2024697797713- 13 
5.422399653255E-14 
1.334593086236E- 14 
3.283927162224E--15 

y = -1.06(3), which agrees with that obtained by the ratio method (Guttmann 1989) 
which predicts ALL = 4.073(13). 

It can be seen that the apparent second-order critical points derived from the 
magnetization, susceptibility, and mass gap series are in almost perfect agreement 
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Table 2. Low-temperature series coefficients for the symmetric energy gap FS and 
antiiymmetric energy gap F A .  Coefficients of A'" a re  listedfor a q u a  and triangular 
lat t ies .  

square lattice Triangular lattice 

n FS FA FS FA 

0 12  
1 -1 

12 
-1 

18 
-1 

I8 
-1 

2 -5.555555555556E-01 -5.0000W0000003-01 -2.444444444444E-U1 -2.222222222222E-01 
3 -1.327160493827E-01 -1.527777777778E-01 -4.358024691358E-02 -4.012345679012E-02 
4 5.616794042720E-03 -7.59479717X131E-03 -4.0622272103753-03 -4748098266617E-03 
5 1.201465096784E-02 5.947788065844E-03 -5,7640794086273-04 - 1.173934994fi65E-03 
6 -3.020170924430E-03 -4.2958231722XlE-05 -1.849732256247E-04 -2.421175630984E-04 
7 -2.969683954259E-03 -2.110541869481E-03 4886027857570E-08 
8 -6.221445613164E-04 - 1.020071040392E-03 -3.246897559863E-06 
9 5.172309644717E-04 -2.605878683522E-06 -2.4007533985413-07 

10 2.27226149441OE-U4 1.8224653492053-0.1 -2.8471U5578792E-07 
1 1  -6.365824021242E-0.3 4.970655653784E-05 -2.026842183202E-08 
12 -7.151910312984E-05 -2.764U31776127E-05 -1.094501447075E-O& 
13 -3.370X402134Y9E-06 -2.173638357627E-05 -I.l206952679YYE-UY 
14 I ,684237806237E -05 - 1.224526S IS I :%E -06 -4.903372635817E- IO 
1 5  4 835502699553E-06 4.641 187O242O8E-06 -7.HYYSUS132628E- 1 I 
16 -3.014466780191E-06 1.846256775656E-06 -1.573~22930150E-l1 
17 -2.050795956432E-06 -5.147328268003E-U7 - 3  774796793064E-I2 

~~ ~ 

-3.851997646933E-05 
-7.347623244466E-06 
-1.546025274667E-06 
-2.9750823330443-0'1 
-5.812433806549E-08 
-1.2397405027513-08 
-2.797693380846E-09 
-6.706575559947E- 10 
-1.68W47947013E-10 
-4.1024667986193-11 
-9.3332271789583-12 

with one another in every case, so we assume henceforth that they are the same for 
each different quantity. Table 4 also shows that the apparent critical indices appear 
to be universal between the square and the triangular lattice. However, the critical 
points derived from the HT and LT series, A," and A," respectively, 'cross over' each 
other by a small but significant amount, of order 2%, which is several times bigger than 
our expected error. If the transition were really second-order, the two results should 
agree. This provides the first signal that the system actually undergoes a first-order 
transition, located somewhere in between the two pseudocritical points A? and A,". 

Next, we have used the high-temperature and low-temperature series directly to 

from the high- and low-temperature limits respectively. An obvious way to do this 
would be to calculate Pad6 approximants to each series; but Pad& approximants are 
best suited to functions whose only singularities are simple poles, whereas the functions 
we are interested in have cuts a t  the spinodal pseudo-critical points, characterized by 
the parameters given in table 4, only a little way beyond the first-order transition 
point. I t  seems better, therefore, to use differential approximants (Guttmann 1989) 
rather than Pad& approximants. A first-order inhomogeneous differential approximant, 
for example, represents a function f(z) by the differential equation, 

extizpo;ate theiiiio&yiiamii qusiiiiiy in iowai~s the irairsiiiorr starting 

Qi(z)zf'(z) + Qo(z)f(z) = P ( z )  (3.1) 
where P ( z ) ,  Q o ( z )  and Q1(z)  are polynomials. The equation allows solutions of the 
form 

f(z) -, A(z)lz - zo14 + B(2)  (3.2) 
near a singular point zO, which is well suited to our requirements. At a given order, one 
determines the polynomials P ( z ) ,  QO(z)  and Q1(z )  by matching the series expansions 
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Table 3. Table of second-order coduent differential approximants to the LT auscep 
tibility series on the trianylar lattice. Estimates of the apparent second-order critical 
point A:’ and index y (in brackets) are  shown, which come from the [L/N + A; N], 
A = - l , O ,  1 approximts. in the notation of Guttmann (1989). 

A N = 2  N = 3  N = 4  N = 5  

-1 4.00927 4.03915 4.07564 4.08288 

(-0.9596) (-0.8489) (-1.0344) (- 1.0609) 

L = l  0 4.00074 4.07848 4.08422 4.07453 

(-0.9696) (-1.0457) (- 1.0546) (- 1.0403) 

1 4.08399 4.03358’ 4.06588* 

(-1.0665) (-1.6799) (-1.0009) 

-1 3.95136 4.00624 4.06981 4.08212 

(-0.9470) (-0.9041) (-1.0216) (-1.0594) 

L = 2  0 3.95119’ 4.07596 4.07641 4.07392 

(-0.9731) (-1.0355) (-1.0463) (-1.0383) 

1 4.08373 4.07632 4.O505OL 

(-1.0674) (-1.0462) (-0.7725) 

-1 4.03001 4.04554 4.09028 4.08061‘ 

(-1.0094) (-0.9844) (-1.0714) (-1,0797) 

L = 3  0 4.05348 4.24691 4.08127 

(-1.0000) (1.2158) (-1.0713) 

1 4.07829 4.07643 4.07768 

(-1.0468) (-1,0464) (-1.0576) 

-1 3.96874 4.15669 4.02009’ 4.07872’ 

(-1.0105) (-1.1780) (-0.6327) (- 1.0630) 

L = 4  0 4.05038 4.09613 4.08410* 

(-0.9977) (-1.0732) (-1.1148) 

1 4.08012 4.0m12 

(-1.0572) (- 1.0558) 

* Estimates defective. 

on either side of (3.1) up to the given order. Then the corresponding approximant to 
f(r) may be found by numerical integration of (3.1). This sort of procedure has been 
discussed previously by Hunter and Baker (1979) and Liu and Fisher (1989), and was 
also used by Guttmann and Enting (1990) in their recent series analysis. 

Figures 1 and 2 show the results for the ground-state energy per site (figure 1 
displays results for a number of different approximants). I t  can be seen that the high- 
temperature and low-temperature extrapolations cross each other a t  a distinct angle, 
which is again characteristic of a first-order transition. The transition point where the 
two lines cross is found to be 

A, = 0.3806(6) (square lattice) 

A< = 0.2466(2) (triangular lattice) 
(3.3) 
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Table 4. Estimates of singularity parmetem, for the pseudo second-oder phase 
transitions, obtained by Dlog Pad6 approximants and eoduent &Rerentid appmxi- 
mmts to the series given in reference I and tables 1 and 2. Both unbiased and biased 
estimates are listed. 

Dlog Pad6 to the HT series on the square lattice 
Unbiased estimates A: 0.388(2) 0.388(3) 

Biased at A: = 0.388(2) Index -0.97(2) 0.535(12) 
Index -0.97(2) 0.54(2) 

Dlog Pad6 to the LT aeries on the square lattice 
Unbiased estimates A t  0.379(4) 0.3784(2) 0.3781(7) 

Biasedat A! = 0.3784(2) Index 0.19(2) 0.1971(10) --1.125(10) 

Dlog Pad6 to the HT series on the triangular lattice 
Unbiased estimates A: 0.2487(10) 

Index -0.90(4) 
Biaed at A: = 0.2487(10) Index -0.90(4) 

Dlog Pad6 to LT series on the triangular lattice 
Unbiased estimates A t  0.243(3) 0.244(2) 0.244(2) 

Index 0.25(7) 0.20(2) -1.15(10) 
Biasedat A b  = 0.2451(5) Index 0.196(15) 0.18(2)' -1.04(6) 

Coduent differential approximant to the LT series on the triangular lattice 
Unbiased estimates A t  0.247(2) 0.2451(5) 

Index 0.35(15) -1.06(3) 
Biased at A: = 0.2451(5) Index -0.185(15) -1.06(3) 

Index 0.19(8) 0.197(2) -1.15(5) 
0.379(5) 0.380(9) 
0.57(5) 0.37(8) 
0.571(8) 0.41(3) 

0.249(1) 
0.50(3) 
0.49(2) 

0.2475(30) 0.243(5) 
0.48(10) 0.39(10) 
0.57(4) 0.37(2) 

~ 

* Estimates defective. 

The remaining functions, namely the magnetization, the susceptibility and the mass 
gap (and also the derivative of the low-temperature ground-state energy), vary rapidly 
near the transition point because of the nearby pseudo-critical point. It is useful 
therefore to 'smooth' each of these functions before making the extrapolations (Liu 
and Fisher 1989), by calculating approximants to the series for (1 - X/X!"))-'f(X) 
rather than f ( A )  itself, where A?) and v are the pseudo-critical point and critical 
index, respectively. 

The results are given in tables 5 and 6, and in figures 3-6. The errors arise mainly 
from the uncertainties in the critical parameters A,, A?) and v in each case. At the 
transition point given by (3.3) we estimate that: 

(i) The derivative of the ground-state energy is discontinuous at  this point, as 
illustrated in figure 3, 

-0.943(5) A - A,- 
(triangular lattice), ( 3 . 5 )  

N dA -1.68(9) A - A,+ 
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-2 0848 

- 2  085 

-2 0852 

z 
2 

-2 0854 

0.2462 0.2461 0.2466 0.2488 0.247 
h 

Figure 1. Graph of the ground state energy 
per site EoIN against A for the triangular lat- 
tice. Integrated Dlog Pad6 approximants to both 
the HT aeries and LT aeries are labelled by or- 
der [NIM] .  The phase transition is expected at 
A, = 0.24664(20) marked by the broken vertical 
Line. 

Figure 2. Graph of the ground state energy per 
site EoIN against A for both the square lattice 
and the triangular lattice. The broken vertical 
lines mark the expectedphase transitions. 

Thus we estimate the discontinuity or 'latent heat' as 

0.42(10) (square lattice) 
(triangular lattice) . (3.6) 

Some selected values for the ground-state energy and its derivative for the square 
lattice are also given as functions of coupling X in tables 5 and 6, along with our 
previous Monte Carlo results (reference I). The series and Monte Carlo estimates are 
in good agreement. 

(ii) The spontaneous magnetization is 

0.42(3) (square lattice) 
0.42(2) (triangular lattice) (3.7) 

i.e. 42% of the maximum possibiie vaiue for both iattices. Tiis agrees weii with ihe 
Monte Carlo estimate (reference I) of 43(7)% for the square lattice. 

(iii) The susceptibility shows a large discontinuity a t  A, for both lattices, as given 
in tables 5 and 6. 

(iv) The symmetric mass gap a t  A, is found to be 

0.36(4) X -+ A,- 
F S = [  (square lattice) 

0.32(4) X - Xc+ 

(3.9) 
0.28(5) X -+ A,- 

F s = {  (triangular lattice) . 
0.36(6) X -+ A,+ 
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Figure 3. Graph of the derivative of the ground 
s tate~~gypers i te ,E~/Nagainrt  Aforboth the 
squarelattice and the triangular lattice. The hrc- 
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Figure 4. Graph of the spontaneous msgnctiz- 
tion MO against A for both the square lattice and 
the triangular lattice. 

Figure 5. Graph of the susceptibility x against 
A for both the square and triangular lattices. 

8 

Figure 6. Graph of the symmetric and antisym- 
metric mass gap FS and F A  against X for both 
the square and triangular lettias. 

!r. 6 t h  wc:ds, the m ~ s  gap is .=a!! but finite z? the t rzs i t inn  point, o ~ e  wx!d 
expect for a weak first-order transition, and our data are consistent, within errors, 
with the possibility that the symmetric mass gap, a t  least, is continuous from the 
low-temperature to the high-temperature phase. The antisymmetric mass gap, on 
the other hand, certainly seems to undergo a substantial discontinuity at the phase 
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Table 6. Values for the pound state energy per site EoIN, the derivative of the 
pound-state energy per site EA/N = l/N(dEo/dX), the mawetization MO, the 
susceptibility x ,  the symmetric energy gap FS, and the antisymmetric e n a m  gap FA 
on the aquare lattice w a function of coupling X estimated by integrated differentid 
approximant to the HT series (for X < XC-) or the LT series (for A 2 A<+),  Also 
shown are the results of pound-state energy per site Eo from Monte Carlo simulation 
in the hulk limit of reference I. 

A EoIN EoIN by MC EAIN MO X FS FA 

0.05 -2.W1682 -2.001682(3) 

0.10 -2.006812 -2.006815(7) 

0.15 -2.015564 -2.01555(2) 

0.20 -2.028200 -2.02820(3) 

0.25 -2.045127(8) -2.0451(1) 

0.30 -2.06700(8) -2.0670(5) 

0.35 -:!.0949(2) -2.094(1) 

0.375 -2.1117(4) - 
A r  -2.1157(6) - 

A c t  -2.1157(3) - 
0.40 -2.1484(1) -2.147(2) 

0.425 -2.202508(8) - 
0.45 -2.264904(3) -2.2640(7) 

0.50 -2.405676 -2.4056(5) 

0.55 -2.560530 - 
ncn (1 -*17*1 
U,"" -*.l'. .l*.t - 
0.70 -3.071238 - 
0.80 -3.433049 - 

-0.067668 

-0.138110 

-0.212814(3) 

-0.29398(4) 

-0.3852(4) 

-0.493(2) 

-0.633(8) 

-0.73(2) 

-0.75(2) 

-1.17(10) 

- 1.936(8) 

-2.3522(8) 

-2.6235(2) 

-2.97724(2) 

-3.201883 
., .lc-n.l) 

-G.ao,"L.J 

-3.554623 

-3.672353 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0.42(3) 

0.6493(10) 

0.7424(1) 

0.79460(5) 

0.85533(1) 

0.890504(7) 

".J'.'a'J,", 

0.941516(4) 

0.957559(3) 

" "..)L.n,C\ 

1.5374 2.7915 

1.8119 2.5650 

2.2003 2.3172(4) 

2.7922(4) 2.0427(10) 

3.805(3) 1.731(6) 

5.94(3) 1.36(1) 

13.6(3) 0.87(2) 

39(5) 0.49(3) 

67(14) 0.36(4) 

8(3) 
0.588(10) 

0.239(2) 

0.1430(2) 

0.0741 

0.0475 

0.0337 
0.0201 

0.0135 

0.32(4) 

1.194(14) 

1.872(10) 

2.419(5) 

3.348(2) 

4.1686(10) 

'l.J."*,'t, 

6.3612 

7.7186 

> n*.1,4\ 

1.0(2) 

2.55(9) 

3.48(3) 

4.152(15) 

5.206(6) 

6.087(2) 

D.OM",", 

8.3498 

9.7242 

oD1n,c\ 

transition, as shown in tables 5 and 6 (recall that F S  and FA are identical in the HT 
phase). 

4. Summary and discussion 

High-temperature and low-temperature series expansions have been obtained for the 
model on both the square and triangular lattices, and extrapolated to the transition 
point using integrated differential approximants. The transition point has been taken 
as the point where the high-temperature and low-temperature extrapolations for the 
ground-state energy cross over, and our result is: 

0.3806(6) (square lattice) 
" = { 0.2466(2) (triangular lattice), 

This agrees with the previous Monte Carlo estimate (reference I) A, = 0.379(3) for 
the square lattice. 

The spontaneous magnetization at  A, is estimated as 

0.42(3) (square lattice) 
0.42(2) (triangular lattice) 
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Table 6. Values for the ground-state enevy per site EoJN,  the derivative of the 
ground-state energy per site EAIN, the magnetization MO, the susceptibility x ,  the 
symmetric energy p p  FS, and the antisymmetric energy gap F A  on the triangular 
lattice (U a function of coupling X estimated by integrated differential approximant 
to the HT aeries (for A 6 Ac-) or the LT series (for A 3 A,+). 

A Eo IN G I N  MO X FS F A  

" CD,%n 
'.YDYD 

. cccn D I.""Y" 
n n c  -nnnr.r, ,, *n-nrn 
Y."" - I .LNLYI I I  - Y _ I Y I Y Y ~  

0.10 -2.011011 -0.23261(5) 0 2.2114 2.3147(2) 

0.15 -2.026361 -0.38779(8) 0 3.2848(6) 1.8783(6) 

0.20 -2.05069(2) -0.600(2) 0 6.410(8) 1.311(5) 

0.225 -2.06743(5) -0.752(3) 0 12.50(8) 0.91(2) 

A r  -2.0854(4) -0.943(6) 0 115(15) 0.28(5) 

A c t  

0.25 

0.275 

0.30 

0.35 

0.40 

0.45 

0.50 

-2.0854(2) 

-2.0926(2) 

-2.16586(1) 

-2.259465 

-2.478861 

-2.723025 

-2.981757 

-3.249928 

-1.68(9) 

--2.17(4) 

-3.4213(6) 

-4.01731(6) 

-4.683488(4) 

-5.051490 

-5.281409 

-5.435872 

0.42(2) 

0.536(8) 

0.73€6(2) 

0.80926(2) 

0.880244(3) 

0.916031 

0.937385 

0.951343 

4 ~ )  
1.1(2) 

0.1512(10) 

0.0749(4) 

0.0340(2) 

0.0205 

0.0141 

0.0103 

0.36(6) 

0.67(5) 

1.93(2) 

2.750(4) 

4.0647(8) 

5.2084(4) 

6.2714(2) 

7.2885 

1.2(3) 

1.86(8) 

3.65(3) 

4.627(10) 

6.0535(15) 

7.2313(5) 

8.3059(2) 

9.3265 

which again agrees well with the Monte Carlo estimate (reference I) MO = 0.43(7) 
for the square lattice. It is also remarkably similar to the Euclidean model result, 
where Monte Carlo studies (Knak Jensen and Mouritsen 1979, Wilson and Vause 
1987, Gavai el a/ 1989) find a spontaneous magnetization very close to 40%, while the 
series analysis of Guttmann and Enting (1990) finds MO = 0.365(30). 

The 'latent heat' was estimated from the discontinuity in the derivative of the 
ground-state energy as 

0.42(10) or l0(3)% (square lattice) 
= { 0.74(9) or lZ(Z)% (triangular lattice) (4.3) 

where the percentages are calculated relative to the maximum possible absolute value 
in each case. In the Euclidean model case, a series analysis (Guttmann and Enting 
1990) finds 14(3)% for the latent heat, while Monte Carlo simulations (Knak Jensen 
and Mouritsen 1979, Gavai e l  al 1989, Alves e l  a/ 1991) give a figure very close to 8%. 
In our case, we found that the series estimate of the latent heat was quite sensitive 
to the method of extrapolation used (particularly the 'smoothing' of the derivative 
function discussed in section 3). A similar effect might explain the discrepancy between 
the series and Monte Carlo estimates in the Euclidean case. 

The various results for the latent heat and the spontaneous magnetization, all ex- 
n.nrl.4 ~" ...rmn+-nnr ~.~ I ; r t . d  c-. p,.mn.,.;r-n :" +-hla 7 T h o  rt.:L:..n .._- :- 1- 
p L c " " c "  - p ' c ' c c ' L Y o L ~ c Y ,  aLLc . I " Y L Y  I Y L  CV...p"L'"Y.L 111 l 0 L " L C  4 .  I .IC "1'L""Lb LC-IUYLC ,I 1,"W 

similar the results are, firstly for the square and triangular lattices in the Hamiltonian 
formulation, and secondly for the Hamiltonian and Euclidean formulations. Apart 
from the discrepancy in latent heat referred to above, the results look very much the 
same. There appears to be at  least an approximate 'universality'between the different 
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cases. Now universality is normally expected to hold only at  second-order transitions, 
where the correlation length scale goes to infinity, so that local details of the lattice 
structure become unimportant. I t  appears that an approximate form of universality 
may hold also for a weak first-order transition such as the present one, a t  which the 
correlation length, though finite, is very large (of order ten lattice units). 

C J Hamer e t  a/  

Table 7. A comparison of the results obtained in the present work with some previ- 
ous calculations, for the spontaneous magnetization and latent heat. Both quantities 
are expressed as percentages of their maximum possible values. (MC = Monte Carlo; 
s = series.) 

Spontaneous 
magnetization (Sa) Latent heat (%) 

Hamiltonian model, square lattice 

MC Hamer e t  0 1  1990 4317) 

S This work 4213) 10.5(2.5) 

Hamiltonian model, triangular lattice 

S This work 4212) 1212) 

n..",:>"*.. ...-AJ "..I.:" I"..:"" 
Y U L Y Y C ~ L  IIIYYF., LUUIL .nl*.LC 

S Guttmann and Enting 1990 36.5(3.0) 14(3) 
MC Gavai e t  ol 1989 39.515) 8.0(4) 

MC Alves d 01 1991 8.0313) 

Finally, some estimates were obtained of the mass gaps in the even (s) and odd 
(A) spin-parity sectors, as follows: 

0.36(4) X - A,- 
0.32(4) A -+ A,+ 

F s = {  

0.36(4) A - A,- 
X - A,+ FA = [ i,ojzj 

for square lattice, and 

0.28(5) A + Ac- 

0.36(6) X -A,+ 
F s = (  

(4.4) 

(4.5) 

(4.7) 

for triangular lattice. Thus the mass gap remains finite, though small, as one expects 
at a first-order transition. Euclidean Monte Carlo studies (Gavai et al 1989, Fukugita 
e f  a/ 1990) find a mass gap or inverse correlation length of about 0.1. Fukugita e l  al 
('S"", C l U l l l l  C I I U C I I L C :  "1 a 0111aL.11 J",,,p "1"L",L",,",LJ 111 L11S l l L r w . 3  6-p O L Y  Y I . C  

of order 15% of the total gap. Our accuracy is not sufficient to determine whether such 
a jump occurs or not; the high- and low-temperature extrapolations certainly end up 
very close to each other for the symmetric gap (equations (4.4) and (4.6)), although 
there is a substantial jump in the antisymmetric gap (equations (4.5) and (4.7)). 

flnnn\ -1°C- -..:A -_"- -0.. - - - l l :  A:--..-&:"..:6., :" +I... -""" .++ha +- . - - ; t ;~n 
Y L m I I ~ I Y L - L I ,  
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One would like to compare the sizes of the mass gaps in the Hamiltonian and 
Euclidean formulations, hut unfortunately we have no absolute scale of comparison 
in the Hamiltonian case. The quantum Hamiltonian can always be rescaled by multi- 
plication with an arbitrary constant. In studies of conformal invariance (von Gehlen 
el a1 1986), this constant is fixed by setting the ‘speed of light’ in the model equal 
to unity, but that requires a study of the dispersion relations in the model, which we 
have not performed. 
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